Single-cell NF-kappaB dynamics reveal digital activation and analogue information processing
Cells operate in dynamic environments using extraordinary communication capabilities that emerge from the interactions of genetic circuitry. The mammalian immune response is a striking example of the coordination of different cell types. Cell-to-cell communication is primarily mediated by signalling molecules that form spatiotemporal concentration gradients, requiring cells to respond to a wide range of signal intensities. Here we use high-throughput microfluidic cell culture and fluorescence microscopy, quantitative gene expression analysis and mathematical modelling to investigate how single mammalian cells respond to different concentrations of the signalling molecule tumour-necrosis factor (TNF)-alpha, and relay information to the gene expression programs by means of the transcription factor nuclear factor (NF)-kappaB. We measured NF-kappaB activity in thousands of live cells under TNF-alpha doses covering four orders of magnitude. We find, in contrast to population-level studies with bulk assays, that the activation is heterogeneous and is a digital process at the single-cell level with fewer cells responding at lower doses. Cells also encode a subtle set of analogue parameters to modulate the outcome; these parameters include NF-kappaB peak intensity, response time and number of oscillations. We developed a stochastic mathematical model that reproduces both the digital and analogue dynamics as well as most gene expression profiles at all measured conditions, constituting a broadly applicable model for TNF-alpha-induced NF-kappaB signalling in various types of cells. These results highlight the value of high-throughput quantitative measurements with single-cell resolution in understanding how biological systems operate.
Research Papers
- Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap.
- Conjunction of factors triggering waves of seasonal influenza
- Algorithmic Bio-surveillance For Precise Spatio-temporal Prediction of Zoonotic Emergence
- Profiling Reactive Metabolites via Chemical Trapping and Targeted Mass Spectrometry
- Does the brain listen to the gut?
- (Meta)genomic insights into the pathogenome of Cellulosimicrobium cellulans
- A robust adaptive denoising framework for real-time artifact removal in scalp EEG measurements
- Imputing Gene Expression in Uncollected Tissues Within and Beyond GTEx
- Small Rad51 and Dmc1 Complexes Often Co-occupy Both Ends of a Meiotic DNA Double Strand Break
- Controlling the Cyanobacterial Clock by Synthetically Rewiring Metabolism