Human HLA-G+ extravillous trophoblasts: Immune-activating cells that interact with decidual leukocytes
Invading human leukocyte antigen-G+ (HLA-G+) extravillous trophoblasts (EVT) are rare cells that are believed to play a key role in the prevention of a maternal immune attack on foreign fetal tissues. Here highly purified HLA-G+ EVT and HLA-G- villous trophoblasts (VT) were isolated. Culture on fibronectin that EVT encounter on invading the uterus increased HLA-G, EGF-Receptor-2, and LIF-Receptor expression on EVT, presumably representing a further differentiation state. Microarray and functional gene set enrichment analysis revealed a striking immune-activating potential for EVT that was absent in VT. Cocultures of HLA-G+ EVT with sample matched decidual natural killer cells (dNK), macrophages, and CD4+ and CD8+ T cells were established. Interaction of EVT with CD4+ T cells resulted in increased numbers of CD4+CD25(HI)FOXP3+CD45RA+ resting regulatory T cells (Treg) and increased the expression level of the Treg-specific transcription factor FOXP3 in these cells. However, EVT did not enhance cytokine secretion in dNK, whereas stimulation of dNK with mitogens or classical natural killer targets confirmed the distinct cytokine secretion profiles of dNK and peripheral blood NK cells (pNK). EVT are specialized cells involved in maternal-fetal tolerance, the properties of which are not imitated by HLA-G-expressing surrogate cell lines.
Research Papers
- Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap.
- Conjunction of factors triggering waves of seasonal influenza
- Algorithmic Bio-surveillance For Precise Spatio-temporal Prediction of Zoonotic Emergence
- Profiling Reactive Metabolites via Chemical Trapping and Targeted Mass Spectrometry
- Does the brain listen to the gut?
- (Meta)genomic insights into the pathogenome of Cellulosimicrobium cellulans
- A robust adaptive denoising framework for real-time artifact removal in scalp EEG measurements
- Imputing Gene Expression in Uncollected Tissues Within and Beyond GTEx
- Small Rad51 and Dmc1 Complexes Often Co-occupy Both Ends of a Meiotic DNA Double Strand Break
- Controlling the Cyanobacterial Clock by Synthetically Rewiring Metabolism