Dominant Role of Oncogene Dosage and Absence of Tumor Suppressor Activity in Nras-Driven Hematopoietic Transformation

Abstract
Biochemical properties of Ras oncoproteins and their transforming ability strongly support a dominant mechanism of action in tumorigenesis. However, genetic studies unexpectedly suggested that wild-type (WT) Ras exerts tumor suppressor activity. Expressing oncogenic NrasG12D in the hematopoietic compartment of mice induces an aggressive myeloproliferative neoplasm that is exacerbated in homozygous mutant animals. Here, we show that increased NrasG12D gene dosage, but not inactivation of WT Nras, underlies the aggressive in vivo behavior of NrasG12D/G12D hematopoietic cells. Modulating NrasG12D dosage had discrete effects on myeloid progenitor growth, signal transduction, and sensitivity to MAP-ERK kinase (MEK) inhibition. Furthermore, enforced WT N-Ras expression neither suppressed the growth of Nras-mutant cells nor inhibited myeloid transformation by exogenous NrasG12D. Importantly, NRAS expression increased in human cancer cell lines with NRAS mutations. These data have therapeutic implications and support reconsidering the proposed tumor suppressor activity of WT Ras in other cancers.

Download